Lý thuyết
30 phút
Bài 1/15

AI Agents Overview

Giới thiệu AI Agents - khả năng, use cases và platforms phổ biến

🤖 AI Agents Overview

Hiểu AI Agents và khả năng của chúng trong no-code.

AI Agent là gì?

Text
1Traditional Chatbot:
2User: "What time do you open?"
3Bot: "We open at 9 AM"
4→ Simple Q&A, pre-programmed responses
5
6AI Agent:
7User: "Book me a meeting with John next Tuesday"
8Agent:
91. Checks John's calendar
102. Finds available slots
113. Proposes options
124. Books meeting
135. Sends invites
14→ Takes actions, multi-step reasoning

Chatbot vs AI Agent

Text
1┌─────────────────┬───────────────────────────────┐
2│ Chatbot │ AI Agent │
3├─────────────────┼───────────────────────────────┤
4│ Answers questions│ Takes actions │
5│ Pre-defined flows│ Dynamic decision making │
6│ Single task │ Multi-step tasks │
7│ Rule-based │ AI-powered reasoning │
8│ No memory │ Context & memory │
9│ Limited scope │ Tool use & integrations │
10└─────────────────┴───────────────────────────────┘

AI Agent Capabilities

1. Conversation Understanding

Text
1Natural language processing:
2- Understand intent
3- Extract entities
4- Handle variations
5- Context awareness
6
7Example:
8"I need to reschedule my appointment"
9→ Intent: reschedule
10→ Entity: appointment (existing)
11→ Action: Find current booking, offer new times

2. Tool Use

Text
1Agents can use tools:
2- Search databases
3- Call APIs
4- Send emails
5- Update records
6- Generate content
7- Process files

3. Multi-Step Reasoning

Text
1Complex task breakdown:
2
3User: "Prepare my weekly report"
4
5Agent steps:
61. Query sales data from CRM
72. Calculate metrics
83. Compare with last week
94. Generate summary text
105. Create charts
116. Compile into document
127. Send to stakeholders

4. Memory & Context

Text
1Types of memory:
2
3Short-term (conversation):
4- Current session context
5- Recent messages
6- User preferences
7
8Long-term (persistent):
9- User profile
10- Past interactions
11- Learned preferences

Use Cases by Industry

Customer Support

Text
1- 24/7 automated support
2- Ticket creation & routing
3- FAQ handling
4- Order status inquiries
5- Returns processing
6- Escalation to humans

Sales & Marketing

Text
1- Lead qualification
2- Product recommendations
3- Appointment scheduling
4- Follow-up sequences
5- Personalized outreach
6- Demo booking

HR & Internal

Text
1- Employee onboarding
2- Policy questions
3- Leave requests
4- IT support tickets
5- Training assistance
6- Feedback collection

E-commerce

Text
1- Product search
2- Size/fit guidance
3- Order tracking
4- Returns handling
5- Personalized recommendations
6- Cart abandonment recovery

No-Code Agent Platforms

Platform Comparison

Text
1┌─────────────┬────────────┬──────────────┬────────────┐
2│ Platform │ Complexity │ Best For │ Pricing │
3├─────────────┼────────────┼──────────────┼────────────┤
4│ Voiceflow │ Medium │ Conversations│ Freemium │
5│ Botpress │ High │ Complex flows│ Open source│
6│ Stack AI │ High │ Enterprise │ Paid │
7│ Chatbase │ Low │ Quick deploy │ Freemium │
8│ Typebot │ Medium │ Lead gen │ Open source│
9└─────────────┴────────────┴──────────────┴────────────┘

Voiceflow

Text
1Strengths:
2✅ Visual conversation design
3✅ Built-in NLU
4✅ Voice + chat support
5✅ Great documentation
6✅ Knowledge base feature
7
8Best for:
9- Conversational AI
10- Customer support
11- Voice assistants

Botpress

Text
1Strengths:
2✅ Open source
3✅ Highly customizable
4✅ Self-hosting option
5✅ Advanced NLU
6✅ Developer-friendly
7
8Best for:
9- Complex workflows
10- Enterprise deployment
11- Custom integrations

Stack AI

Text
1Strengths:
2✅ Visual workflow builder
3✅ LLM orchestration
4✅ Enterprise features
5✅ Pre-built templates
6✅ Team collaboration
7
8Best for:
9- Enterprise automation
10- Complex AI workflows
11- Production deployments

Agent Architecture

Basic Flow

Text
1┌─────────┐ ┌─────────┐ ┌─────────┐
2│ User │────▶│ Agent │────▶│ Actions │
3│ Input │ │ Brain │ │ & Tools │
4└─────────┘ └─────────┘ └─────────┘
5
6 ┌─────┴─────┐
7 │ Memory │
8 │ & Context │
9 └───────────┘

Components

Text
11. Input Processing
2 - Text, voice, buttons
3 - Intent recognition
4 - Entity extraction
5
62. Agent Brain (LLM)
7 - Reasoning
8 - Decision making
9 - Response generation
10
113. Tools & Actions
12 - API calls
13 - Database operations
14 - External services
15
164. Memory
17 - Conversation history
18 - User data
19 - Knowledge base

Building Effective Agents

Design Principles

Agent Design Best Practices
Text
11. Clear scope
2 - Define what agent can/cannot do
3 - Set expectations
4
52. Graceful fallbacks
6 - Human handoff when needed
7 - Clear error messages
8
93. Personality consistency
10 - Brand voice
11 - Tone guidelines
12
134. Progressive disclosure
14 - Don't overwhelm users
15 - Guide step by step

Common Mistakes

Avoid These
Text
1❌ Trying to do everything
2❌ No human escalation path
3❌ Ignoring edge cases
4❌ Poor error handling
5❌ No analytics/monitoring
6❌ Overly complex flows

Planning Your Agent

Questions to Ask

Text
11. What problem does it solve?
22. Who are the users?
33. What actions should it take?
44. What integrations needed?
55. How to measure success?
66. What's the fallback plan?

Success Metrics

Text
1Measure:
2- Resolution rate (% solved without human)
3- User satisfaction (CSAT)
4- Time to resolution
5- Handoff rate
6- Conversation completion rate
7- Return users

Bài Tập

Practice

Plan your first AI agent:

  1. Choose a use case (support, sales, internal)
  2. Define 5-10 main tasks it should handle
  3. List required integrations
  4. Sketch basic conversation flow
  5. Identify fallback scenarios

Tiếp theo: Bài 2 - Voiceflow Fundamentals