Lý thuyết
Bài 3/3

RAG Agents with n8n & Vector Databases

Xây dựng RAG systems với n8n - Knowledge base chatbots, document QA, semantic search.

📋 Mô tả khóa học

RAG (Retrieval-Augmented Generation) cho phép AI trả lời dựa trên documents của bạn. Khóa học này giúp bạn build RAG systems với n8n, connect vector databases, và create knowledge base chatbots.

🎯 Bạn sẽ học được gì?

  • ✅ Vector database basics (Pinecone, Supabase)
  • ✅ Document ingestion workflows
  • ✅ RAG pipelines trong n8n
  • ✅ Semantic search implementation
  • ✅ Context-aware AI responses
  • ✅ Knowledge base automation

👥 Khóa học dành cho ai?

  • n8n users building chatbots
  • Teams needing internal knowledge bases
  • Customer support automation
  • Document-heavy businesses

📚 Chương trình học (14 bài)

Module 1: RAG Fundamentals

  1. What is RAG - Concept, architecture, use cases
  2. Embeddings Explained - What vectors are
  3. Vector Database Options - Pinecone, Supabase, Qdrant
  4. n8n Vector Store Nodes - Setup and configuration

Module 2: Document Processing

  1. Document Loaders - PDF, Word, web pages
  2. Text Splitting - Chunking strategies
  3. Embedding Documents - Creating vector representations
  4. Indexing Workflows - Automated document ingestion

Module 3: RAG Workflows

  1. Query Pipeline - Search → retrieve → generate
  2. Context Management - Relevant chunks selection
  3. Response Generation - Grounded answers
  4. Citation & Sources - Reference original docs

Module 4: Production

  1. Chatbot Interface - Telegram, Slack, web
  2. Testing & Optimization - Improve accuracy

🛠️ Tools Used

  • n8n
  • Pinecone / Supabase Vector
  • OpenAI Embeddings
  • Document processing libraries

🚀 Dự án chính

  1. Company Knowledge Base Chatbot - Internal wiki assistant
  2. AI Tutor with Course Materials - Educational Q&A
  3. Document QA System - PDF analysis bot
  4. Smart Search for Notion - Semantic search over notes

⚙️ Prerequisites

  • ✅ n8n + GenAI Integration course
  • ✅ Understanding of AI basics
  • ✅ Documents/content to index

Thời lượng: 6-8 tuần (5-6 giờ/tuần)
Level: Advanced
Pathway: n8n Automation

Bắt đầu học →