Advanced Machine Learning & AI
1. Giới thiệu khóa học
Khóa học Advanced ML & AI đưa bạn từ research đến production, tập trung vào:
- ✅ Advanced techniques: AutoML, Meta-learning, Few-shot learning
- ✅ Production ML: MLOps, model deployment, monitoring
- ✅ Real-world project: E-commerce recommendation system
- ✅ Best practices: A/B testing, feature stores, CI/CD
2. Roadmap khóa học
Module 1: Advanced ML Techniques (Tuần 1-3)
Bài 2: Hyperparameter Tuning nâng cao
- Grid Search, Random Search, Bayesian Optimization
- Optuna, Hyperopt
- Neural Architecture Search (NAS)
Bài 3: AutoML
- Auto-sklearn, TPOT, H2O AutoML
- AutoKeras, NAS
- When to use AutoML
Bài 4: Advanced Ensemble Methods
- Stacking, Blending
- Weighted ensembles
- Bayesian Model Averaging
Bài 5: Transfer Learning & Fine-tuning
- Pre-trained models (BERT, GPT, ResNet)
- Domain adaptation
- Few-shot learning
Module 2: Recommendation Systems (Tuần 4-6)
Bài 6: Recommendation Systems Overview
- Collaborative Filtering (User-based, Item-based)
- Content-based filtering
- Hybrid approaches
Bài 7: Matrix Factorization
- SVD, ALS
- Implicit feedback
- Non-negative Matrix Factorization
Bài 8: Deep Learning for RecSys
- Neural Collaborative Filtering
- Deep Matrix Factorization
- Embeddings
Bài 9: Advanced RecSys
- Two-tower models
- Sequential recommendations (RNN, Transformers)
- Context-aware recommendations
Module 3: MLOps & Production (Tuần 7-9)
Bài 10: MLOps Fundamentals
- ML lifecycle
- Experiment tracking (MLflow, Weights & Biases)
- Model registry
Bài 11: Model Deployment
- REST APIs (FastAPI, Flask)
- Model serving (TensorFlow Serving, TorchServe)
- Batch vs Real-time inference
Bài 12: Feature Engineering & Feature Store
- Feature pipelines
- Feature store (Feast, Tecton)
- Online vs Offline features
Bài 13: Model Monitoring & Maintenance
- Data drift detection
- Model performance monitoring
- Retraining strategies
Module 4: Advanced Topics & Project (Tuần 10-12)
Bài 14: A/B Testing & Experimentation
- A/B test design
- Statistical significance
- Multi-armed bandits
Bài 15: Fairness & Bias in ML
- Bias detection
- Fairness metrics
- Mitigation strategies
Bài 16: Final Project - E-commerce Recommendation System
3. Dự án Thực hành
🎯 E-commerce Recommendation System
Mô tả: Xây dựng hệ thống gợi ý sản phẩm hoàn chỉnh cho website thương mại điện tử.
Components:
11. Data Pipeline2 ├── User interactions (clicks, purchases, ratings)3 ├── Product catalog & metadata4 └── Feature engineering pipeline5 62. Recommendation Models7 ├── Collaborative Filtering (ALS)8 ├── Content-based (TF-IDF + Cosine Similarity)9 ├── Deep Learning (Two-tower model)10 └── Ensemble (Weighted combination)11 123. Deployment13 ├── REST API (FastAPI)14 ├── Real-time inference (<100ms)15 ├── Batch predictions (daily)16 └── A/B testing framework17 184. Monitoring19 ├── Click-through rate (CTR)20 ├── Conversion rate21 ├── Model drift detection22 └── Dashboard (Grafana)Tech Stack:
- Data: PostgreSQL, Redis, Feast
- Training: PyTorch, Scikit-learn, Implicit
- MLOps: MLflow, DVC, Airflow
- Deployment: FastAPI, Docker, Kubernetes
- Monitoring: Prometheus, Grafana, Evidently
Metrics:
- Precision@K, Recall@K, NDCG@K
- Click-through rate (CTR)
- Conversion rate
- Revenue per user
4. Công cụ & Frameworks
4.1 AutoML
| Tool | Strengths | Use Case |
|---|---|---|
| Auto-sklearn | Scikit-learn compatible | Tabular data |
| TPOT | Genetic algorithms | Feature engineering |
| H2O AutoML | Enterprise-ready | Production ML |
| AutoKeras | Neural networks | Image, text |
4.2 MLOps
1# Experiment tracking2import mlflow3mlflow.start_run()4mlflow.log_params({"lr": 0.01, "epochs": 100})5mlflow.log_metric("accuracy", 0.95)6mlflow.sklearn.log_model(model, "model")78# Feature store9from feast import FeatureStore10store = FeatureStore(repo_path=".")11features = store.get_online_features(12 features=["user_features:age", "product_features:category"],13 entity_rows=[{"user_id": 123, "product_id": 456}]14)1516# Model monitoring17from evidently import ColumnMapping18from evidently.dashboard import Dashboard19dashboard = Dashboard(tabs=[DataDriftTab()])20dashboard.calculate(reference_data, production_data)5. Yêu cầu đầu vào
5.1 Kiến thức
- ✅ Machine Learning fundamentals (regression, classification, trees)
- ✅ Deep Learning basics (neural networks, CNNs, RNNs)
- ✅ Python advanced (OOP, decorators, context managers)
- ✅ SQL, Pandas, NumPy
5.2 Setup
1# ML frameworks2pip install scikit-learn xgboost lightgbm3 4# Deep Learning5pip install torch torchvision transformers6 7# AutoML8pip install auto-sklearn tpot h2o9 10# MLOps11pip install mlflow wandb dvc feast12 13# Deployment14pip install fastapi uvicorn docker15 16# Monitoring17pip install evidently prometheus-client6. Lộ trình học tập
Tuần 1-3: Advanced Techniques
- Mục tiêu: Master AutoML, ensembles, transfer learning
- Deliverable: Kaggle competition submission
Tuần 4-6: Recommendation Systems
- Mục tiêu: Build RecSys from scratch
- Deliverable: Movie recommendation prototype
Tuần 7-9: MLOps
- Mục tiêu: Deploy ML model to production
- Deliverable: Deployed API with monitoring
Tuần 10-12: Final Project
- Mục tiêu: Complete e-commerce RecSys
- Deliverable: Full-stack recommendation system
7. Đánh giá
| Component | Weight | Criteria |
|---|---|---|
| Weekly assignments | 30% | Code quality, performance |
| Kaggle competition | 20% | Leaderboard ranking |
| MLOps project | 20% | Deployment, monitoring |
| Final project | 30% | System design, metrics, presentation |
Pass criteria:
- Total score ≥ 70%
- Final project demo
- Code review passed
8. Career Paths
Sau khóa học, bạn có thể:
- ML Engineer: Deploy & maintain ML systems
- MLOps Engineer: Build ML infrastructure
- Research Scientist: Advanced algorithms
- Data Scientist (Senior): End-to-end ML projects
9. Tài liệu tham khảo
Books
- "Designing Machine Learning Systems" (Chip Huyen) - Production ML
- "Machine Learning Engineering" (Andriy Burkov) - MLOps
- "Recommender Systems Handbook" (Ricci et al.) - RecSys bible
Courses
Papers
- Netflix RecSys: "The Netflix Recommender System"
- Google: "Rules of Machine Learning"
- Uber: "Michelangelo: Uber's ML Platform"
