Lý thuyết
Bài 1/4

Tổng Quan Advanced ML & AI

Machine Learning nâng cao, MLOps và Production Systems

Advanced Machine Learning & AI

1. Giới thiệu khóa học

Khóa học Advanced ML & AI đưa bạn từ research đến production, tập trung vào:

  • Advanced techniques: AutoML, Meta-learning, Few-shot learning
  • Production ML: MLOps, model deployment, monitoring
  • Real-world project: E-commerce recommendation system
  • Best practices: A/B testing, feature stores, CI/CD

2. Roadmap khóa học

Module 1: Advanced ML Techniques (Tuần 1-3)

Bài 2: Hyperparameter Tuning nâng cao

  • Grid Search, Random Search, Bayesian Optimization
  • Optuna, Hyperopt
  • Neural Architecture Search (NAS)

Bài 3: AutoML

  • Auto-sklearn, TPOT, H2O AutoML
  • AutoKeras, NAS
  • When to use AutoML

Bài 4: Advanced Ensemble Methods

  • Stacking, Blending
  • Weighted ensembles
  • Bayesian Model Averaging

Bài 5: Transfer Learning & Fine-tuning

  • Pre-trained models (BERT, GPT, ResNet)
  • Domain adaptation
  • Few-shot learning

Module 2: Recommendation Systems (Tuần 4-6)

Bài 6: Recommendation Systems Overview

  • Collaborative Filtering (User-based, Item-based)
  • Content-based filtering
  • Hybrid approaches

Bài 7: Matrix Factorization

  • SVD, ALS
  • Implicit feedback
  • Non-negative Matrix Factorization

Bài 8: Deep Learning for RecSys

  • Neural Collaborative Filtering
  • Deep Matrix Factorization
  • Embeddings

Bài 9: Advanced RecSys

  • Two-tower models
  • Sequential recommendations (RNN, Transformers)
  • Context-aware recommendations

Module 3: MLOps & Production (Tuần 7-9)

Bài 10: MLOps Fundamentals

  • ML lifecycle
  • Experiment tracking (MLflow, Weights & Biases)
  • Model registry

Bài 11: Model Deployment

  • REST APIs (FastAPI, Flask)
  • Model serving (TensorFlow Serving, TorchServe)
  • Batch vs Real-time inference

Bài 12: Feature Engineering & Feature Store

  • Feature pipelines
  • Feature store (Feast, Tecton)
  • Online vs Offline features

Bài 13: Model Monitoring & Maintenance

  • Data drift detection
  • Model performance monitoring
  • Retraining strategies

Module 4: Advanced Topics & Project (Tuần 10-12)

Bài 14: A/B Testing & Experimentation

  • A/B test design
  • Statistical significance
  • Multi-armed bandits

Bài 15: Fairness & Bias in ML

  • Bias detection
  • Fairness metrics
  • Mitigation strategies

Bài 16: Final Project - E-commerce Recommendation System


3. Dự án Thực hành

🎯 E-commerce Recommendation System

Mô tả: Xây dựng hệ thống gợi ý sản phẩm hoàn chỉnh cho website thương mại điện tử.

Components:

Text
11. Data Pipeline
2 ├── User interactions (clicks, purchases, ratings)
3 ├── Product catalog & metadata
4 └── Feature engineering pipeline
5
62. Recommendation Models
7 ├── Collaborative Filtering (ALS)
8 ├── Content-based (TF-IDF + Cosine Similarity)
9 ├── Deep Learning (Two-tower model)
10 └── Ensemble (Weighted combination)
11
123. Deployment
13 ├── REST API (FastAPI)
14 ├── Real-time inference (<100ms)
15 ├── Batch predictions (daily)
16 └── A/B testing framework
17
184. Monitoring
19 ├── Click-through rate (CTR)
20 ├── Conversion rate
21 ├── Model drift detection
22 └── Dashboard (Grafana)

Tech Stack:

  • Data: PostgreSQL, Redis, Feast
  • Training: PyTorch, Scikit-learn, Implicit
  • MLOps: MLflow, DVC, Airflow
  • Deployment: FastAPI, Docker, Kubernetes
  • Monitoring: Prometheus, Grafana, Evidently

Metrics:

  • Precision@K, Recall@K, NDCG@K
  • Click-through rate (CTR)
  • Conversion rate
  • Revenue per user

4. Công cụ & Frameworks

4.1 AutoML

ToolStrengthsUse Case
Auto-sklearnScikit-learn compatibleTabular data
TPOTGenetic algorithmsFeature engineering
H2O AutoMLEnterprise-readyProduction ML
AutoKerasNeural networksImage, text

4.2 MLOps

Python
1# Experiment tracking
2import mlflow
3mlflow.start_run()
4mlflow.log_params({"lr": 0.01, "epochs": 100})
5mlflow.log_metric("accuracy", 0.95)
6mlflow.sklearn.log_model(model, "model")
7
8# Feature store
9from feast import FeatureStore
10store = FeatureStore(repo_path=".")
11features = store.get_online_features(
12 features=["user_features:age", "product_features:category"],
13 entity_rows=[{"user_id": 123, "product_id": 456}]
14)
15
16# Model monitoring
17from evidently import ColumnMapping
18from evidently.dashboard import Dashboard
19dashboard = Dashboard(tabs=[DataDriftTab()])
20dashboard.calculate(reference_data, production_data)

5. Yêu cầu đầu vào

5.1 Kiến thức

  • ✅ Machine Learning fundamentals (regression, classification, trees)
  • ✅ Deep Learning basics (neural networks, CNNs, RNNs)
  • ✅ Python advanced (OOP, decorators, context managers)
  • ✅ SQL, Pandas, NumPy

5.2 Setup

Bash
1# ML frameworks
2pip install scikit-learn xgboost lightgbm
3
4# Deep Learning
5pip install torch torchvision transformers
6
7# AutoML
8pip install auto-sklearn tpot h2o
9
10# MLOps
11pip install mlflow wandb dvc feast
12
13# Deployment
14pip install fastapi uvicorn docker
15
16# Monitoring
17pip install evidently prometheus-client

6. Lộ trình học tập

Tuần 1-3: Advanced Techniques

  • Mục tiêu: Master AutoML, ensembles, transfer learning
  • Deliverable: Kaggle competition submission

Tuần 4-6: Recommendation Systems

  • Mục tiêu: Build RecSys from scratch
  • Deliverable: Movie recommendation prototype

Tuần 7-9: MLOps

  • Mục tiêu: Deploy ML model to production
  • Deliverable: Deployed API with monitoring

Tuần 10-12: Final Project

  • Mục tiêu: Complete e-commerce RecSys
  • Deliverable: Full-stack recommendation system

7. Đánh giá

ComponentWeightCriteria
Weekly assignments30%Code quality, performance
Kaggle competition20%Leaderboard ranking
MLOps project20%Deployment, monitoring
Final project30%System design, metrics, presentation

Pass criteria:

  • Total score ≥ 70%
  • Final project demo
  • Code review passed

8. Career Paths

Sau khóa học, bạn có thể:

  • ML Engineer: Deploy & maintain ML systems
  • MLOps Engineer: Build ML infrastructure
  • Research Scientist: Advanced algorithms
  • Data Scientist (Senior): End-to-end ML projects

9. Tài liệu tham khảo

Books

  • "Designing Machine Learning Systems" (Chip Huyen) - Production ML
  • "Machine Learning Engineering" (Andriy Burkov) - MLOps
  • "Recommender Systems Handbook" (Ricci et al.) - RecSys bible

Courses

Papers

  • Netflix RecSys: "The Netflix Recommender System"
  • Google: "Rules of Machine Learning"
  • Uber: "Michelangelo: Uber's ML Platform"

Bắt đầu hành trình nâng cao! 🚀

Next: Bài 2 - Hyperparameter Tuning Nâng cao